Raumanian một công thức lạ !!!

aidokhongphailatoi

Thanh niên Ngõ chợ

Một bức thư lạ lùng

Ngày 31 tháng 1 năm 1913, nhà Toán học G.H. Hardy1, giáo sư tại trường Đại học Cambridge, London, nhận được một phong thư khá dày, từ một địa chỉ nào đó ở tận miền Nam Ấn-Độ xa xôi. Tác giả bức thư tự giới thiệu như sau:

“Thưa ông,

Tôi xin phép được tự giới thiệu tôi là thư ký kế toán hãng Port Trust ở bến cảng Madras, lương 20 bảng Anh một năm. Bây giờ tôi được 23 tuổi,…”.

Tiếp theo là 9 trang với hàng trăm công thức Toán, có công thức nhà Toán học Hardy biết là đúng, có công thức nhà Toán học chưa thấy bao giờ, không có một lời chứng minh hoặc giải thích nào đi kèm cả. Cuối thư có những hàng sau đây:

“Tôi nghèo, nếu ông tin tưởng ở giá trị những gì tôi viết ở đây, tôi muốn nhờ ông cho công bố chúng. Tôi hoàn toàn tin tưởng ở những lời hướng dẫn của ông. Tôi xin lỗi đã làm phiền ông.”

Có quá nhiều công thức lạ, nhưng đáng ngạc nhiên nhất là khởi đầu mấy trang Toán có công thức: 1 + 2 + 3 + 4 +….= – 1/12 )

Ai cũng biết tổng các số dương không thể là một số âm, tổng của các số nguyên không thể là một phân số được. Hơn nữa tổng của chuỗi số này bằng vô cực, sao bằng một số hữu hạn được? Có gì lầm lẫn ở đây không? Nhìn qua một số công thức phức tạp nhưng chính xác trong phần sau, nhà toán học Hardy không thể giải thích cái sai ở công thức đầu tiên này.

Thì ra nhà toán học được xem là “người ngoài hành tinh” Ramanujan ấy đã đi trước chúng ta gần 100 năm khi đưa ra công thức ấy, không một lời giải thích. Ngày nay ta gọi công thức ấy được gọi là tổng
Ramanujan và đã được dùng trong lý thuyết dây (string theory), đặc biệt để giải nghĩa hiện tượng được gọi là hiệu ứng Casimir (Casimir Effect) trong cơ học lượng tử. Về phía Ramanujan, mãi về sau ông mới nói với Hardy rằng cố tình đưa ra công thức này lên đầu để gây sự chú ý cho Hardy.

Từ một vùng trời xa lạ, thiếu vắng môi trường khoa học

Srinivasa Ramanujan (1887 – 1920) sinh tại làng Erode, phía Nam thành phố Tamil Nadu, miền Nam Ấn Độ trong một gia đình nghèo khó. Cha ông làm việc trong một cửa hàng buôn bán nhỏ, mẹ hát trong một ngôi đền. Lên 5 tuổi, Ramanujan được cho đi học tại trường Kumbakonam, một thị trấn gần Madras, nơi gia đình đang sinh sống. Mặc dầu không được học một cách có hệ thống, nhưng Ramanujan sớm thể hiện một khả năng về toán một cách kỳ lạ: Khi mới 12 tuổi cậu có thể giải được nhiều bài toán về Lý thuyết số và Giải tích và có thể nghĩ ra những ý tưởng toán học trong một khung cảnh hoàn toàn không được kết nối với cộng đồng khoa học xung quanh.

Năm 1902 (15 tuổi), học được từ trong sách phương pháp giải phương trình bậc ba của các nhà Toán học Ý thế kỷ 16, Ramanujan tìm ra được cách giải phương trình bậc bốn theo cách riêng của mình. Rồi cậu lao vào giải phương trình bậc năm nhưng không có kết quả, vì đâu biết rằng phương trình bậc năm không thể giải được bằng căn thức (Abel, Galois).

Tốt nghiệp trung học vào năm 1904, Ramanujan được tặng thưởng giải Rao cho học sinh có kết quả xuất sắc trong việc học toán và nhận được học bổng để vào học Đại học Công lập Kumbakonam, ở đó Ramanujan đạt kết quả kỳ diệu về toán học, nhưng tỏ ra không có năng lực gì ở các môn học còn lại, vì vậy Ramanujan mất học bổng. Chàng tự ý bỏ đi sang một thị trấn khác và sau đó xin vào học tại Đại học Pachaiyappa ở Madras. Cũng như ở trường trước, kết quả ở các môn học khác quá kém và cũng vì sức khỏe có vấn đề, chàng rớt trong kỳ tốt nghiệp và đã trình cho một số giáo sư ở trường đại học địa phương một vài kết quả của công trình nghiên cứu của mình để có được thư giới thiệu cần thiết khi đi xin việc. Công trình của chàng làm các giáo sư quá đỗi ngạc nhiên tới mức lúc đầu không tin là nghiên cứu độc lập của chàng. Cho đến khi chàng chỉ cho họ thấy làm thế nào chàng có được các kết quả ấy, thì họ mới hiểu rằng chàng không phải là người giả mạo, và họ viết cho chàng những thư giới thiệu nồng nhiệt, đôi khi có kèm thêm một chút tiền trợ giúp để cho chàng có thể tiếp tục nghiên cứu toán học.

Ramanujan cho đăng trên tờ Journal of Indian Mathematical Society (Báo của Hội Toán học Ấn Độ) một bài toán thách đố các nhà Toán học tìm ra cách giải.
 

Một bức thư lạ lùng

Ngày 31 tháng 1 năm 1913, nhà Toán học G.H. Hardy1, giáo sư tại trường Đại học Cambridge, London, nhận được một phong thư khá dày, từ một địa chỉ nào đó ở tận miền Nam Ấn-Độ xa xôi. Tác giả bức thư tự giới thiệu như sau:

“Thưa ông,

Tôi xin phép được tự giới thiệu tôi là thư ký kế toán hãng Port Trust ở bến cảng Madras, lương 20 bảng Anh một năm. Bây giờ tôi được 23 tuổi,…”.

Tiếp theo là 9 trang với hàng trăm công thức Toán, có công thức nhà Toán học Hardy biết là đúng, có công thức nhà Toán học chưa thấy bao giờ, không có một lời chứng minh hoặc giải thích nào đi kèm cả. Cuối thư có những hàng sau đây:

“Tôi nghèo, nếu ông tin tưởng ở giá trị những gì tôi viết ở đây, tôi muốn nhờ ông cho công bố chúng. Tôi hoàn toàn tin tưởng ở những lời hướng dẫn của ông. Tôi xin lỗi đã làm phiền ông.”

Có quá nhiều công thức lạ, nhưng đáng ngạc nhiên nhất là khởi đầu mấy trang Toán có công thức: 1 + 2 + 3 + 4 +….= – 1/12 )

Ai cũng biết tổng các số dương không thể là một số âm, tổng của các số nguyên không thể là một phân số được. Hơn nữa tổng của chuỗi số này bằng vô cực, sao bằng một số hữu hạn được? Có gì lầm lẫn ở đây không? Nhìn qua một số công thức phức tạp nhưng chính xác trong phần sau, nhà toán học Hardy không thể giải thích cái sai ở công thức đầu tiên này.

Thì ra nhà toán học được xem là “người ngoài hành tinh” Ramanujan ấy đã đi trước chúng ta gần 100 năm khi đưa ra công thức ấy, không một lời giải thích. Ngày nay ta gọi công thức ấy được gọi là tổng
Ramanujan và đã được dùng trong lý thuyết dây (string theory), đặc biệt để giải nghĩa hiện tượng được gọi là hiệu ứng Casimir (Casimir Effect) trong cơ học lượng tử. Về phía Ramanujan, mãi về sau ông mới nói với Hardy rằng cố tình đưa ra công thức này lên đầu để gây sự chú ý cho Hardy.

Từ một vùng trời xa lạ, thiếu vắng môi trường khoa học

Srinivasa Ramanujan (1887 – 1920) sinh tại làng Erode, phía Nam thành phố Tamil Nadu, miền Nam Ấn Độ trong một gia đình nghèo khó. Cha ông làm việc trong một cửa hàng buôn bán nhỏ, mẹ hát trong một ngôi đền. Lên 5 tuổi, Ramanujan được cho đi học tại trường Kumbakonam, một thị trấn gần Madras, nơi gia đình đang sinh sống. Mặc dầu không được học một cách có hệ thống, nhưng Ramanujan sớm thể hiện một khả năng về toán một cách kỳ lạ: Khi mới 12 tuổi cậu có thể giải được nhiều bài toán về Lý thuyết số và Giải tích và có thể nghĩ ra những ý tưởng toán học trong một khung cảnh hoàn toàn không được kết nối với cộng đồng khoa học xung quanh.

Năm 1902 (15 tuổi), học được từ trong sách phương pháp giải phương trình bậc ba của các nhà Toán học Ý thế kỷ 16, Ramanujan tìm ra được cách giải phương trình bậc bốn theo cách riêng của mình. Rồi cậu lao vào giải phương trình bậc năm nhưng không có kết quả, vì đâu biết rằng phương trình bậc năm không thể giải được bằng căn thức (Abel, Galois).

Tốt nghiệp trung học vào năm 1904, Ramanujan được tặng thưởng giải Rao cho học sinh có kết quả xuất sắc trong việc học toán và nhận được học bổng để vào học Đại học Công lập Kumbakonam, ở đó Ramanujan đạt kết quả kỳ diệu về toán học, nhưng tỏ ra không có năng lực gì ở các môn học còn lại, vì vậy Ramanujan mất học bổng. Chàng tự ý bỏ đi sang một thị trấn khác và sau đó xin vào học tại Đại học Pachaiyappa ở Madras. Cũng như ở trường trước, kết quả ở các môn học khác quá kém và cũng vì sức khỏe có vấn đề, chàng rớt trong kỳ tốt nghiệp và đã trình cho một số giáo sư ở trường đại học địa phương một vài kết quả của công trình nghiên cứu của mình để có được thư giới thiệu cần thiết khi đi xin việc. Công trình của chàng làm các giáo sư quá đỗi ngạc nhiên tới mức lúc đầu không tin là nghiên cứu độc lập của chàng. Cho đến khi chàng chỉ cho họ thấy làm thế nào chàng có được các kết quả ấy, thì họ mới hiểu rằng chàng không phải là người giả mạo, và họ viết cho chàng những thư giới thiệu nồng nhiệt, đôi khi có kèm thêm một chút tiền trợ giúp để cho chàng có thể tiếp tục nghiên cứu toán học.

Ramanujan cho đăng trên tờ Journal of Indian Mathematical Society (Báo của Hội Toán học Ấn Độ) một bài toán thách đố các nhà Toán học tìm ra cách giải.
Ấn nó vẫn trên đại vịt 1 nhân tài
 
Ông đó mơ thấy vị thần nào đó cho công thức, xong tỉnh giấc ráng chép lại

Qua vụ này tao rút ra 2 điều
1. Người Trái Đất còn quá ngu đến nổi bọn ngoài hành tinh phải thâm nhập truyền công thức để trái đất phát triển theo đúng chu kì tạo hoá
2. Thần tiên sử sách là do bọn ngoài hành tinh cải trang vào
 

Có thể bạn quan tâm

Top